Dr Anna Wensley Santure

2001 BSc(Hons), Mathematics and Genetics, University of Otago; 2006 PhD, Genetics, University of Otago

Profile Image
Senior Lecturer


2017-Present Senior Lecturer, School of Biological Sciences, University of Auckland, Auckland, NZ

2013-2017 Lecturer, School of Biological Sciences, University of Auckland, Auckland, NZ

2009-2013 Postdoctoral researcher, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK

2006-2008 Postdoctoral researcher, Institute of Zoology, Zoological Society of London, London, UK

Research | Current

1. Genetic basis and evolution of quantitative traits

There has long been an interest in the genetic basis of continuous (or “quantitative”) characters such as height and weight. How many genes influence a trait, and how do these genes interact with each other and with the environment to produce a range of trait measurements? How does the genetic basis, or ‘architecture’, of these traits constrain or encourage their response to selection? I use large-scale genomic tools to dissect the genetic architecture of quantitative traits, particularly in wild populations, with the aim of understanding how the history of these populations (such as population size and selection) has determined the genetic architecture we see today, and might be used to predict how these populations will respond to future selection pressures such as anthropogenic climate change.

In my previous position at the University of Sheffield, UK, I was working with Prof Jon Slate on a 5 year European Research Council funded project investigating the evolutionary genetics of the great tit (Parus major) at Wytham Woods, Oxford. We have developed genomic tools to enable the dissection of the genetic basis of quantitative traits in the population, including life history traits such as clutch size, and morphological traits such as wing length and body size. This ongoing project helps us understand the processes and constraints on microevolutionary change in a classic long-term population study.

With Dr Patricia Brekke and Dr John Ewen I am currently analysing the genetic basis of morphological and life history traits in the hihi (stitchbird, Notiomystis cincta), an endangered New Zealand native bird, with the aim to understand the adaptive potential of the species and how it might respond to future selection pressures including climate change.

2. Genomic imprinting

Genes are imprinted when their expression depends on the sex of the parent passing them on. For example, the copy of a gene we inherit from mum might be expressed, while the copy that we inherit from dad is turned off. In collaboration with Prof Hamish Spencer, we have developed models for genomic imprinting on the X chromosome in mammals, and for how imprinting and maternal genetic effects influence quantitative traits. I am currently working on models and statistical techniques to dissect the influence of genomic imprinting on quantitative traits in wild populations, including the great tit.

3. Other interests

In addition, I have research interests in a broad range of other population and quantitative genetics and genomics, including population genetic and quantitative genetic theory, especially with regard to genomic imprinting and population differentiation, and the use of marker data to reconstruct pedigrees and describe population differentiation.


My research projects utilise genomics tools, including next generation sequencing, single nucleotide polymorphism (SNP) genotyping on high density arrays (“SNP chips”), and bioinformatics, along with statistical approaches such as quantitative trait locus (QTL) mapping and genome wide association scans (GWAS).

I am also interested in the continuing development of genomics resources in New Zealand, and have a special interest in conservation genetics (in particular, management of genetic diversity and the characterisation of phylogenetically unique New Zealand fauna).

Please get in touch if you are interested in developing a research project in any of my areas of interest!

Teaching | Current

I teach in BIOSCI 202 (Genetics), BIOSCI 351 (Molecular Genetics), BIOSCI 354 (Gene Expression and Gene Transfer) and BIOINF 704 (Statistical Bioinformatics). I am course coordinator for and teach in BIOSCI 210 (Evolution and the Origins of Life).

Postgraduate supervision

2014- PhD co-supervisor for Agustín López Santos (whose main supervisor is Prof Joel Rothman)

2015- PhD supervisor for Kate Lee (with Dr Patricia Brekke, Dr John Ewen and Assoc Prof Craig Millar)

2016- PhD supervisor for Alex Knight (with Dr Patricia Brekke, Dr John Ewen and Assoc Prof Craig Millar)

2016- PhD co-supervisor for Stephanie Galla (whose main supervisor is Dr Tammy Steeves and co-supervisor Dr Marie Hale)

2016- PhD co-supervisor for Priscila Madi Salloum (whose main supervisor is Dr Shane Lavery and advisor Dr Pierre de Villemereuil)

2015 Honours co-supervisor for Sian Glazier (whose main supervisor was Dr Anne Gaskett and co-supervisor Megan Friesen)

2016 Honours supervisor for Edwardo Reynolds (with Dr Matt Littlejohn)

2017 Honours supervisor for Phoebe Scherer


Scientific Committee member, Centre for Computational Evolution


Editor for Molecular Ecology Resources

Associate Editor for Molecular Ecology

Associate Editor for The Auk: Ornithological Advances

Areas of expertise

  • Quantitative genetics
  • Molecular ecology
  • Ecology and evolution
  • Population genetics
  • Genomic imprinting

Selected publications and creative works (Research Outputs)

  • Galla, S. J., Buckley, T. R., Elshire, R., Hale, M. L., Knapp, M., McCallum, J., ... Steeves, T. E. (2016). Building strong relationships between conservation genetics and primary industry leads to mutually beneficial genomic advances. Molecular Ecology, 25 (21), 5267-5281. 10.1111/mec.13837
    URL: http://hdl.handle.net/2292/31057
    Other University of Auckland co-authors: Thomas Buckley
  • Santure, A. W. (2016). An ecological model organism flies into the genomics era. Molecular Ecology Resources, 16 (2), 379-381. 10.1111/1755-0998.12491
    URL: http://hdl.handle.net/2292/29432
  • Santure, A. W., Poissant, J., De Cauwer, I., van Oers, K., Robinson, M. R., Quinn, J. L., ... Slate, J. (2015). Replicated analysis of the genetic architecture of quantitative traits in two wild great tit populations. Molecular Ecology, 24 (24), 6148-6162. 10.1111/mec.13452
    URL: http://hdl.handle.net/2292/29435
  • Brekke, P., Ewen, J. G., Clucas, G., & Santure, A. W. (2015). Determinants of male floating behaviour and floater reproduction in a threatened population of the hihi (Notiomystis cincta). Evolutionary applications, 8 (8), 796-806. 10.1111/eva.12287
    URL: http://hdl.handle.net/2292/29904
  • Firth, J. A., Hadfield, J. D., Santure, A. W., Slate, J., & Sheldon, B. C. (2015). The influence of nonrandom extra-pair paternity on heritability estimates derived from wild pedigrees. Evolution, 69 (5), 1336-1344. 10.1111/evo.12649
    URL: http://hdl.handle.net/2292/29888
  • Stapley, J., Santure, A. W., & Dennis, S. R. (2015). Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Molecular Ecology, 24 (9), 2241-2252. 10.1111/mec.13089
    URL: http://hdl.handle.net/2292/29902
  • Sepil, I., Radersma, R., Santure, A. W., De Cauwer, I., Slate, J., & Sheldon, B. C. (2015). No evidence for MHC class I-based disassortative mating in a wild population of great tits. Journal of Evolutionary Biology, 28 (3), 642-654. 10.1111/jeb.12600
    URL: http://hdl.handle.net/2292/29890
  • Gossmann, T. I., Santure, A. W., Sheldon, B. C., Slate, J., & Zeng, K. (2014). Highly variable recombinational landscape modulates efficacy of natural selection in birds. Genome Biology and Evolution, 6 (8), 2061-2075. 10.1093/gbe/evu157
    URL: http://hdl.handle.net/2292/29909