Associate Professor Leo K Cheng

BE(Hons) PhD

Profile Image
Associate Professor

Biography

Leo is an Associate Professor at the Auckland Bioengineering Institute. He graduated from the University of Auckland with a Bachelor of Engineering in Engineering Science with First Class Honours in 1997 and a PhD in Bioengineering in 2002.

 

Research | Current

Leo's main interests are in understanding electrophysiological events in the gastrointestinal tract and the heart and their relationship to mechanical function. He is also interested in developing methods for non-invasively recording and interpreting the weak electrical and magnetic fields that result from cardiac and gastrointestinal electrical activity.

Leo works closely with a number of international research groups based in the US and Europe (Vanderbilt University, Mayo Clinic, New York Institute of Technology and University of Stuttgart).

Leo has active grants from the Health Research Council of New Zealand, NIH NIDDK, NIH Common Fund (SPARC) and the Alexander von Humboldt Foundation.

 

Project Links

Postgraduate supervision

Current PhDs

  • Rachel Berry Human Gastric Slow Wave Activity Redefined Through High-Resolution Mapping
  • Saeed Alighaleh New Foundations for Pacing the Stomach

Completed PhDs

  • Mingzhu Zhu. Central Pattern Generator Based Involuntary Peristalsis Control of a Swallowing Device by Modelling, Design and Experiments
    Shameer SatharHigh performance computational simulations of gastrointestinal electrical activity
  • Steven Dirven. Biomimetic Design and Experimental Methods Towards a Biologically Inspired, Soft Bodied, Peristaltic, Esophageal Swallowing Robot
  • Jerry Gao. Modelling the physiological consequences of interstitial cells of cajal network depletion on gastrointestinal function 
  • Rachel Lees-Green. Keeping pace with interstitial cells of Cajal: Modelling gastrointestinal electrophysiology
  • Laura Bear. Non-invasive analysis of cardiac electrophysiology from body surface potentials
  • Muhammad Zeeshan Ul Haque. A model of the nerves in the diabetic foot
    Tim Angeli. Small intestine slow wave activity defined through in vivo high-resolution electrical mapping
  • Niranchan PaskaranandavadivelTechniques for quantification and interpretation of gastric slow wave activity
  • Peng Du. Mathematical modelling of gastric electrophysiology
  • Rita Yassi. A realistic finite element model of the human gastro-oesophageal junction

Completed MEs

  • Jeelean Lim. Simulating the Excitation-Contraction Coupling in the Intestine
  • Franziska Eckardt. Anatomically Realistic Finite Element Models of the Pelvic Floor Muscles
  • Niranchan Paskaranandavadivel. Analysis of Body Surface Electrocardiograms During Atrial Fibrillation
  • Kimberly Noakes. Mathematical Models of the Pelvic Floor and Anal Canal

 

Distinctions/Honours

  • 2016: Vice Chancellor's Research Excellence Award, University of Auckland
  • 2015: Fraunhofer-Bessel Research Awardee, Alexander Von Humbolt Foundation (with Fraunhofer-IPA, Stuttgart, Germany)
  • 2007: Claude McCarthy Fellowship, NZ Vice-Chancellors Committee
  • 2004: Distinguished Plenary Oral Presentation Award at Digestive Disease Week Conference
  • 2002: Finalist National Business Review Management Competition
  • 2001: Jos Willems Young Investigator Finalist, International Society for Computerized Electrocardiology Conference
  • 2000: Highly Commended Award, Australian and New Zealand Industrial and Applied Mathematics Conference
  • 1997: Auckland UniServices PhD scholarship

 

Responsibilities

  • 2016-current: Research Leadership Group, Riddet Institute CoRE
  • 2015-current: Associate Director Research, Auckland Bioengineering Institute
  • 2015-current: Associate Investigator, Riddet Institute CoRE
  • 2015-current: Flagship Leader and Associate Investigator, MedTech CoRE
  • 2013-current: Executive Committtee, Auckland Bioengineering Institute
  • 2013: Organising Committee, OpenSim Workshop & MuscleUp Symposium
  • 2012-current: Executive Committee, International Gastrointestinal Electrophysiology Society
  • 2011: Chair of Organising Committee, 2nd International Meeting on New Advances on Gastrointestinal Motility
  • 2011-current: Human Participants Ethics Advisor, Auckland Bioengineering Institute
  • 2008-2014: Affiliated Researcher, Riddet Institute CoRE
  • 2006-current: Principal Investigator Committee, Auckland Bioengineering Institute

 

Areas of expertise

  • mathematical modelling of cardiac and gastrointestinal electrophysiology
  • forward and inverse problems of electrocardiology
  • non-invasive methods for recording bio-electro-magnetic fields
  • electrode development for measuring gastrointestinal electrophysiology
  • high performance computing
  • construction of anatomically realistic models
     

Committees/Professional groups/Services

Societies

  • iGES (International Gastrointestinal Electrophysiology Society)
  • ANMS (American Neurogastrointestinal Motility Society)
  • IFFGD (International Foundation for Functional Gastrointestinal Diseases)

Selected publications and creative works (Research Outputs)

  • Gao, J., Du, P., O'Grady G, Archer, R., Farrugia, G., Gibbons, S. J., & Cheng, L. K. (2013). Numerical metrics for automated quantification of interstitial cell of Cajal network structural properties. J R Soc Interface, 10 (86)10.1098/rsif.2013.0421
    Other University of Auckland co-authors: Rosalind Archer, Greg O'Grady, Peng Du
  • Kim, J. H. K., Pullan, A. J., & Cheng, L. K. (2012). Reconstruction of multiple gastric electrical wave fronts using potential-based inverse methods. Phys Med Biol, 57 (16), 5205-5219. 10.1088/0031-9155/57/16/5205
  • O'Grady G, Angeli, T. R., Du, P., Lahr, C., Lammers, W. J. E. P., Windsor, J. A., ... Cheng, L. K. (2012). Abnormal Initiation and Conduction of Slow-Wave Activity in Gastroparesis, Defined by High-Resolution Electrical Mapping. Gastroenterology
  • Du, P., O'Grady G, Cheng, L. K., & Pullan, A. J. (2010). A multiscale model of the electrophysiological basis of the human electrogastrogram. Biophys J, 99 (9), 2784-2792. 10.1016/j.bpj.2010.08.067
    URL: http://hdl.handle.net/2292/11125
    Other University of Auckland co-authors: Peng Du, Greg O'Grady
  • Du, P., O'Grady G, Gibbons, S. J., Yassi, R., Lees-Green, R., Farrugia, G., ... Pullan, A. J. (2010). Tissue-specific mathematical models of slow wave entrainment in wild-type and 5-HT(2B) knockout mice with altered interstitial cells of Cajal networks. Biophys J, 98 (9), 1772-1781. 10.1016/j.bpj.2010.01.009
    URL: http://hdl.handle.net/2292/11124
    Other University of Auckland co-authors: Peng Du, Greg O'Grady
  • Du, P., O'Grady G, Egbuji, J. U., Lammers, W. J., Budgett, D., Nielsen, P., ... Cheng, L. K. (2009). High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation. Ann Biomed Eng, 37 (4), 839-846. 10.1007/s10439-009-9654-9
    URL: http://hdl.handle.net/2292/7597
    Other University of Auckland co-authors: John Windsor, Poul Nielsen
  • Cheng, L. K., Komuro, R., Austin, T. M., Buist, M. L., & Pullan, A. J. (2007). Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity. World J Gastroenterol, 13 (9), 1378-1383.
    URL: http://hdl.handle.net/2292/13383

Identifiers

Contact details

  • Media Contact

Primary location

UNISERVICES HOUSE - Bldg 439
Level 7, Room 747
70 SYMONDS ST
AUCKLAND 1010
New Zealand

Web links