Dr Minh Le Kieu

PhD

Biography

I am a Lecturer in Traffic and Urban Analytics at the Department of Civil and Environmental Engineering, University of Auckland. I have been contributing to the development and delivery of large research projects, such as an ERC Horizon 2020 in the UK (https://dust.leeds.ac.uk/), and the Premier Innovation Initiative in Australia (http://adait.io/inno-pii.html). 

My research focuses on the use of data analytics and computer simulation techniques to solve urban complex problems. In Data Analytics, I adapt and develop machine learning methods to analyse Big data of individuals, such as Smart Card, mobile phone or social network data. In Computer Simulation, I am specialised in the development of data-driven Agent-based models, a cutting-edge simulation technique of heterogeneous agents interacting with each other, to explain complex urban systems.

For the access to my slides, papers and codes, please find my personal webpage here: https://leminhkieu.github.io/

Research | Current

  • Big Data analytics
  • Machine Learning 
  • Artificial Intelligence
  • Agent-Based Modelling
  • Computer Simulation / Digital Twins
  • Data-driven systems
  • Infrastructure Systems

More on my research can be found here: https://bit.ly/2020-MK 

And please find my Google Scholar page for an updated list of my publications: https://scholar.google.com.au/citations?hl=en&user=mjpqmUsAAAAJ

Teaching | Current

  • CIVIL 761. Planning and Design of Transport Facilities.
    Traffic signal practice/safety audits, two-way highway planning, arterial traffic management, modelling and simulation and traffic flow.
  • CIVIL 771. Planning and Managing Transport
    An advanced course on integrating land use planning and transport provisions, including planning for different land use trip types and parking, travel demand management techniques, and intelligent transport systems applications. An independent project applies this specialised knowledge towards planning, designing and managing transport infrastructure in a Territorial Local Authority (TLA) area.

  • CIVIL 361. Transportation Engineering 2
    Planning for land transport facilities and urban development. Arrangement of street networks and environmental areas. Basic operational analyses at priority and signalised intersections for vehicles and pedestrians. Highway capacity analyses. Parking design. Introduction to transportation planning modelling.

Postgraduate supervision

I am looking for motivated PhD students to work with me on research topics related, but not limited to, the integration of data analytics/machine learning/artificial intelligence with computer simulation to solve complex urban transport problems. Students with high GPA will have a good chance of obtaining the University's scholarships. Applications also welcome from country-specific scholarship students (e.g. Vietnam's VIED Project 911 fellowship and China's CSC, more information can be found at: https://www.auckland.ac.nz/en/study/international-students/scholarships-loans-and-funding/country-specific-scholarships-and-funding0.html)

Distinctions/Honours

AWARDS

  • 2019, Newton Fund Travel grant, Alan Turing Institute, UK
  • 2015, Outstanding Higher Research Degree award, QUT, Australia 
  • 2011, Sparbanksstiftelsen Alpha International Scholarship, Swedbank, Sweden
  • 2011, Eastern Asia Society for Transportation Studies (EASTS):  Outstanding young researcher award, Korea
  • 2010, Wala och Folke Danielsson fund, Linkö̈ping University, Sweden

RESEARCH FUNDING: 

  • 2019, Urban Transport Modelling for Sustainable Well-being in Hanoi, British Academy, UK
  • 2019, GSMA Data Science Challenge, Alan Turing Institute, UK
  • 2018, Improvements of Public Transport Information & Priority System, TfNSW, Australia
  • 2018, NSW On-demand Transport Pilot project, TfNSW, Australia
  • 2016, Traffic microsimulation and planning of the Pacific Motorway, Transport and Main Roads (TMR), Australia
  • 2015, Traffic estimation using bus GPS data, TMR, Australia

Areas of expertise

  • Agent-based modelling
  • Big data analytics
  • Machine learning

Committees/Professional groups/Services

Organising Chair, Workshop on Agent-Based Modelling of Urban Systems (ABMUS)

 

Selected publications and creative works (Research Outputs)

  • Kieu, L. M., Ou, Y., Truong, L. T., & Cai, C. (2020). A class-specific soft voting framework for customer booking prediction in on-demand transport. Transportation Research Part C: Emerging Technologies, 114, 377-390. 10.1016/j.trc.2020.02.010
    URL: http://hdl.handle.net/2292/51825
  • Kieu, L.-M., Malleson, N., & Heppenstall, A. (2020). Dealing with uncertainty in agent-based models for short-term predictions. Royal Society open science, 7 (1)10.1098/rsos.191074
  • Clay, R., Kieu, L. M., Ward, J. A., Heppenstall, A., & Malleson, N. (2020). Towards Real-Time Crowd Simulation Under Uncertainty Using an Agent-Based Model and an Unscented Kalman Filter. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 10.1007/978-3-030-49778-1_6
  • Le-Minh, K., Dong, N., Malleson, N., & Chung, E. (2019). A stochastic schedule-following simulation model of bus routes. TRANSPORTMETRICA B-TRANSPORT DYNAMICS, 7 (1), 1588-1610. 10.1080/21680566.2019.1670118
  • Nguyen, H., Bentley, C., Kieu, L. M., Fu, Y., & Cai, C. (2019). Deep Learning System for Travel Speed Predictions on Multiple Arterial Road Segments. Transportation Research Record, 2673 (4), 145-157. 10.1177/0361198119838508
  • Nguyen, H., Kieu, L. M., Wen, T., & Cai, C. (2018). Deep learning methods in transportation domain: A review. IET Intelligent Transport Systems, 12 (9), 998-1004. 10.1049/iet-its.2018.0064
  • Kieu, L. M., & Cai, C. (2018). Stochastic collective model of public transport passenger arrival process. IET Intelligent Transport Systems, 12 (9), 1027-1035. 10.1049/iet-its.2018.0085
  • Kieu, L. M., Ou, Y., & Cai, C. (2018). Large-scale transit market segmentation with spatial-behavioural features. Transportation Research Part C: Emerging Technologies, 90, 97-113. 10.1016/j.trc.2018.03.003

Contact details

Primary office location

ENGINEERING BLOCK 1 - Bldg 401
Level 11, Room 1116
20 SYMONDS ST
AUCKLAND CENTRAL
AUCKLAND 1010
New Zealand

Social links

Web links