Associate Professor Viji Sarojini

PhD (Indian Institute of Science, Bangalore and BHU)

Profile Image
Associate Professor


  • PhD. BHU, Varanasi & IISc. Bangalore, India (with Prof. R.B.Rao & Prof P. Balaram)

Non-protein Amino Acids in Peptide Design

  • Post-doctoral Research Fellow, Linkoping University, Sweden (with Prof Lars Baltzer).

Control of Folding and Function in Synthetic Polypeptides  and Glycopeptides

  • Research Fellow, University of Leeds, Leeds, UK

Synthetic Peptides to study Membrane-Protein Interactions

  • Research Associate, Texas A&M University, Texas, USA

Analysis of post-trastional modifications in Human Toll-Like Receptor Protein 3 (hTLR-3)

  • Post-doctoral Research Scientist, HortResearch, Auckland, New Zealand

Antibacterial Peptides against Fire Blight of Pome Fruits


Research | Current

Peptides in Food, Drug, Health and Materials

Peptides are an initeresting class of molecules with applications in agriculture, biology, medicine, food and material sciences. Peptides have evolved in nature to take on highly spcific functions, have great potency and are much smaller than recombinant proteins and antibodies. The filed of therapeutic peptides is undergoing a very exciting revival owing to substantial technological progresses during the last decade.

Peptide-macromolecular interactions modulate several biological functions. The development of biologically active peptides is an area of immense research interest. However, inherent conformational flexibility and susceptibility to proteases are two major drawbacks that limit the use of peptides made up of the twenty protein amino acids as drugs. Backbone and side-chain modifications are used as a means of controlling conformational flexibility and protease stability in the design of biologically active peptides and synthetic mimics of protein structures. The major focus of my research is the denovo design, synthesis and structure activity studies of bioactive peptides.

We use Solid Phase Peptide Synthesis following Fmoc- chemistry as well as conventional solution phase peptide synthesis procedures. The peptide sequences are tailor made from naturally occurring proteins. Polypeptide Modelling software is made use of for this purpose. Structure-activity studies of the synthetic peptides are carried out in order to optimise the structure for specific applications.

Nuclear Magnetic Resonance (NMR) and Circular Dichroism (CD) are used to elucidate the secondary structure of synthetic peptides. Of particular interest to the group are

  • Kauri Dieback and other Plant Diseases caused by Phytophthora
  • Self-assembling Peptides and Peptide Nanomaerials
  • Antimicrobial Peptides against Multi Drug Resistant (MDR) Biofilms
  • Self-cleaning Antimicrobial Surfaces
  • Multifunctional Anticancer Peptides with increased tumor selectivity
  • Non-protein amino acids in Peptide Design
  • Synthetic strategies for novel linear and cyclc lipopeptides
  • Antifreeze Peptides for Frozen Food Preservation

Current projects

Integrated Approach to Combat Kauri Dieback and other Plant Diseases

PhD scholarship available (3 years) (MBIE Smart Ideas Funding)

Phytophthora species are among the most destructive pathogens that cause catastrophic damage to plants and thus the primary industry (e.g. horticulture, plantation forestry) globally. In New Zealand, Phytophthora species are also threatening ecologically and culturally important taonga species such as kauri. Current methods used for Phytophthora control have significant shortcomings such as inability to reach spores embedded in the soil, destroy different life stages of Phytophthora, phytotoxicity and resistance development. In this project we are integrating Medicinal Chemistry approaches used in human disease management and Mātauranga Māori to combat Phytophthora species. Our aim is to develop novel hybrid molecules with activity against all life stages of Phytophthora. This project is supported through a successful MBIE Smart Ideas fund. A PhD scholarship is available to work in this area.

Smart, Self-cleaning Antimicrobial Surface against Catheter-associated Urinary Tract Infections (CAUTIs)

Research Assistantship available (2 years) (Auckland Medical Research Foundation Funding)

Catheter associated urinary tract infections (CAUTIs) are one of the most common healthcare associated infections worldwide, and if not treated, can lead to life threatening scenarios. Currently, treating hospital-acquired infections in New Zealand cost DHBs more than $135 million and more than 50% of these are urinary tract infections. Although currently used urinary catheters prevent initial bacterial colonisation, they are not effective in preventing biofilm growth and have catheter blockage issues undermining long-term stability. The aim of this proposal is to develop a new antimicrobial urinary catheter to provide long-term efficacy against UTIs, which can mitigate most of the drawbacks associated with current commercial urinary catheters. Project will be supervised by A/Prof Sarojini, Prof Phillips, Prof Travas-Sejdic and Dr De Zoysa.

Targeted Anticancer Peptides (Collaboration with Auckland Cancer Society Research Centre)

Through this project, we aim to develop the fundamentals of selective anticancer chemotherapy using peptides as targeting moieties. Multifunctional peptides incorporating novel and advanced design features with the potential to realize enhanced tumor selectivity and potency are being developed in a multi-disciplinary collaboration with Ditinguished Professor Bill Denny (ACSRC) and the School of Pharmacy. Anticancer Peptide conjugated liposomes are used for enhanced cellular internalization. General properties of peptide grafted liposome nanoparticles are studied.​

Antimicrobial Peptides against Multi Drug Resitant Biofilms

Biofilms are matrix-embedded microorganisms adhering to biotic and abiotic surfaces including human tissues and are impervious to drugs. Biofilm forming bacteria exhibit multiple drug resistance (MDR) and this phenomenon is becoming increasingly prevalent amongst human, animal and plant pathogens. Infections from bacterial biofilms cause high health costs as well as economic loss in agriculture. Our screening program last year identified peptide based structures that reduce the formation of biofilms in certain bacterial species. Further research is being carried out to explore the mechanism of action of these lead molecules and elucidate their Structure Activity Relationships. This research has significant implications in the treatment of chronic infections such as those caused by Pseudomonas aeruginosa in cystic fibrosis patients because existing antibiotic therapy has not been successful in killing bacterial biofilms, the most common cause of persistent infections.

Antifreeze Peptides: Frozen Food Industry Applications

Synthetic peptide analogues of naturally occuurring Anti-Freeze Proteins (AFPs) are studied to better understand their function and potential in frozen food applications. Naturally occurring AFPs exhibit properties of ice-recrystalization inhibition. The ability of AFPs to influenze the size, morphology and aggregation of ice crystals can be used in food technology where the growth of ice crystals in frozen foods is of primary concern. This project is carried out in collaboration with the Food Science Group at UoA.

Protein Based Medical Adhesives

Medical adhesives form an important component of the surgical toolbox and provide an interesting area for research and development. Naturally occurring adhesive proteins have attracted the attention of scientists due to their incredible adhesive strength and biocompatibility. In this project we aim to synthetise short adhesive peptides and study their adhesive properties to various surfaces like medically relevant metals, teflon and other plastic under different temperatures and moisture conditions. Atomic Force Microscopy (AFM) as well as fatigue failure test will be used to evaluate the binding force between the adhesive and the surface. Applications of these peptides include embedding antibiotics into the adhesive to prevent surface colonisation of medical implants by bacteria well as its potential as a surgical sealant for wound closure. This project is done in collaboration is done in collaboration with Faculty of Engineering, UoA.

Branched Peptide Therapeutics

The concept of a ‘Magic Bullet’ coined by Paul Elrich a century ago can now be attributed to target specific molecules like peptides. Modern day technologies, especially the combinatorial synthesis and screening of peptides, have resulted in the development of dozens of peptides as clinical trial candidates for various diseases. Despite this, there still exists some industrial reluctance to use peptides as drugs, mainly because of their short half-lives. Branched peptides exhibit strong resistance to proteases and are hence suitable candidates for the development of peptide based drugs. I am interested in developing synthetic proteins with a branched structure. An ongoing project in this direction makes use of Native Chemical Ligation to stitch together a pore forming peptide to a designed helix.

Development of Peptide Antibiotics for Fire Blight and Bacterial Canker of Kiwi Fruit

This project aims to develop antimicrobial peptides with potency against PSA of Kiwi Gold and Fire Blight of pome fruits in a cost-effective manner. Our strategy focusses on tailoring large polypeptides into shorter sequences and developing novel antimicrobial peptides which are simple to synthesize in a cost-effective manner. This is achieved through rational design, synthesis and bioassay guided analysis.

DNA Binding Peptides Targetting Type III Secretion Pathway in the Fire Blight Pathogen, Erwinia amylovora (Collaboration with Plant and Food Research)

Erwinia amylovora is a biofilm forming Gram negative bacterium that causes Fire Blight of apple and pear. Fire Blight results in severe economic loss to apple and pear orchardists in New Zealand and several other parts of the world with no effective chemicals for prevention or cure especially because of resistance to streptomycin by the pathogen. The development of new compounds capable of combating this disease is timely and is of particular interest to the NZ apple industry. An ongoing project in my research group is focused on developing novel peptide based structures as chemical control options for Fire Blight. Gram negative bacteria use the Type III Secretion System (TTSS) to synthesise ‘Hrp proteins’ and infect the host. Harpins, the virulent proteins secreted by TTSS of E.amylovora, induce rapid changes in plant cell metabolism thus leading to plant cell death. Mutations in the TTSS gene have been shown to make these bacteria less virulent. Our research aims to develop synthetic peptides with DNA binding ability that can be targeted to specific sites of the TTSS gene of E.amylovora and inactivate it.

Mimics of Ina Protein: Explolring Surface Frost Damage in Plants, Pseudomonas Syringae as a Model

Phytotoxins are products of plant pathogens or of host-pathogen interactions that directly injure plant cells and cause disease development. Pseudomonas syringae is one such phytopathogenic bacterium that infects a wide range of plant species including the kiwi fruit. In addition to the production of phytotoxins, this bacterium is also characterized by ice nucleation activity through the production of ‘Ina proteins’ which causes severe frost damages in plants, especially when sudden decrease of temperature occurs. Recent outbreak of the bacterial canker that hit the kiwi gold orchards in Italy was caused by P.syringae. We aim to develop synthetic peptide analogues of the ‘Ina proteins' of P.syringae to study their ice nucleation properties.

Use of non-protein amino acids in protein design
The use of non-protein amino acids to enhance the in vivo stability of biologically active peptides is another area of research I am interested in. We make use of alpha,alpha-dialkylated amino acids to promote specific secondary structures and folding in designed biologically active peptides.

Teaching | Current

CHEM 260                    Introduction to Green Chemistry

CHEM 351                    Chemicals Big and Small: Nano-material to Bio-macromolecules

CHEM 360                    Contemporary Green Chemistry

CHEM 390                    Medicinal Chemistry (Course Coordinator)

CHEM 392                    Issues in Drug Design and Development  (Course Coordinator)

CHM 750                      Advanced Topics in Chemistry


Postgraduate supervision

Research Fellows

Dr Gayan Heruka De Zoysa


Current Students



Jana Ravichandran

Hugh Glossop

Urawadee Rajchakit

Anu Sharma

Aljo Anand

Saurabh Lamba

Venkat Guna

Fathumma Zhiraz

John Duodu

Ho Tung Wong



Nicholas Godfrey

Suk-Joon Moon


Previous Students

PhD and MSc

Gayan Heruka De Zoysa (PhD, 2015); Charles Kong (PhD, 2017); Bincy Jacob (PhD, 2017); Alan Cameron (PhD, 2017); Kyriakos Varnava (PhD, 2018); Kamal Patel (2020); Shama Dissanayake (2021)


Anu Sharma (MSc, 2018); Urawadee Rajchakit (MSc, 2017); Bindu Sobil (MSc, 2015); Dhiren Dunraj (MSc, 2013); Sushen Naidoo (MSc, 2014); Charles Kong (MSc, 2012)



Gayan Heruka Dezoysa (2010); Harveen Kaur (2010); Aiko Cefre (2011); Zahir Khan, (2011); Zaid Amso (2012);  Alan Cameron (2012); Shama Dissanayake (2013); Jodeanne Ho, (2013); Cherrie Tollemach (2013);  Mustatfa Naji (2013); Essie Pearl (2015); Hugh Glossop (2016); Jei Yeb Kim (2018); Simon Lin (2019); Annemarie Pham  (2019); Flynn Parrish (2020); Ho Tung Wong (2020


Head of Academic Operations (SCS)

Deputy Director, Centre for Green Chemical Sciences, University of Auckland


Areas of expertise

  • Peptide Chemistry
  • Biological Chemistry
  • Plant Disease Control
  • Microbiology

Committees/Professional groups/Services


New Zealand Institute of Chemistry, Auckland Branch


Professional Groups

European Peptide Society

New Zealand Institute of Chemistry

International Horticultural Society


Selected publications and creative works (Research Outputs)

As of 29 October 2020 there will be no automatic updating of 'selected publications and creative works' from Research Outputs. Please continue to keep your Research Outputs profile up to date.
  • Pariary, R., Ghosh, B., Bednarikova, Z., Varnava, K. G., Ratha, B. N., Raha, S., ... Mandal, A. K. (2020). Targeted inhibition of amyloidogenesis using a non-toxic, serum stable strategically designed cyclic peptide with therapeutic implications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 1868 (5)10.1016/j.bbapap.2020.140378
    Other University of Auckland co-authors: Kyriakos Varnava
  • Patel, K. D., De Zoysa, G. H., Kanamala, M., Patel, K., Pilkington, L. I., Barker, D., ... Sarojini, V. (2020). Novel Cell-Penetrating Peptide Conjugated Proteasome Inhibitors: Anticancer and Antifungal Investigations. Journal of medicinal chemistry, 63 (1), 334-348. 10.1021/acs.jmedchem.9b01694
    Other University of Auckland co-authors: Zimei Wu, Lisa Pilkington, David Barker, Gayan De Zoysa
  • Yathursan, S., Wiles, S., Read, H., & Sarojini, V. (2019). A review on anti-tuberculosis peptides: Impact of peptide structure on anti-tuberculosisactivity. Journal of peptide science : an official publication of the European Peptide Society, 25 (11)10.1002/psc.3213
    Other University of Auckland co-authors: Siouxsie Wiles, Hannah Read
  • Lee, S., Khun, D., Kumarasinghe, G. L., De Zoysa, G. H., Sarojini, V., Vellara, H. R., ... Thakur, S. S. (2019). Ex vivo evaluation of the stability, safety and antibacterial efficacy of an extemporaneous povidone-iodine preparation for ophthalmic applications. Clinical & experimental optometry, 102 (6), 583-589. 10.1111/cxo.12899
    Other University of Auckland co-authors: Sachin Thakur, Ilva Rupenthal, Gayan De Zoysa
  • Parveen, S., Hanif, M., Leung, E., Tong, K. K. H., Yang, A., Astin, J., ... Movassaghi, S. (2019). Anticancer organorhodium and -iridium complexes with low toxicity in vivo but high potency in vitro: DNA damage, reactive oxygen species formation, and haemolytic activity. Chemical communications (Cambridge, England), 55 (80), 12016-12019. 10.1039/c9cc03822a
    Other University of Auckland co-authors: Christian Hartinger, Muhammad Hanif, Euphemia Leung, Stephen Jamieson, Gayan De Zoysa, Tilo Söhnel, Jonathan Astin
  • Kihara, S., De Zoysa, G. H., Shahlori, R., Vadakkedath, P. G., Ryan, T. M., Mata, J. P., ... McGillivray, D. J. (2019). Solution structure of linear battacin lipopeptides - the effect of lengthening fatty acid chain. Soft matter, 15 (37), 7501-7508. 10.1039/c9sm00932a
    Other University of Auckland co-authors: Gayan De Zoysa
  • Sarojini, V., Cameron, A. J., Varnava, K. G., Denny, W. A., & Sanjayan, G. (2019). Cyclic Tetrapeptides from Nature and Design: A Review of Synthetic Methodologies, Structure, and Function. Chemical reviews, 119 (17), 10318-10359. 10.1021/acs.chemrev.8b00737
    Other University of Auckland co-authors: Bill Denny, Alan Cameron, Kyriakos Varnava
  • Varnava, K. G., Mohid, S. A., Calligari, P., Stella, L., Reynison, J., Bhunia, A., & Sarojini, V. (2019). Design, Synthesis, Antibacterial Potential, and Structural Characterization of N-Acylated Derivatives of the Human Autophagy 16 Polypeptide. Bioconjugate chemistry, 30 (7), 1998-2010. 10.1021/acs.bioconjchem.9b00290
    Other University of Auckland co-authors: Kyriakos Varnava

Contact details

Primary office location

SCIENCE CENTRE 302 - Bldg 302
Level 8, Room 817
New Zealand