Dr William Schierding

PhD, Bioinformatics

Profile Image
Research Fellow


William came to New Zealand in 2012 after beginning his career in the United States, where he earned his Masters Degree in Genetic Epidemiology and then worked as a Programmer Analyst at the McDonnell Genome Institute at Washington University in St. Louis. In New Zealand, William completed his PhD at the University of Auckland (Liggins Institute, under the leadership of Wayne Cutfield and Justin O’Sullivan), where he was focused on the functional consequences of the three-dimensional structure of genome organization. William is currently working as a Research Fellow at the Liggins Institute, studying the application of polygenic risk scores to advise obstetric management.

Research | Current

About the research:

William’s research focus is on the intersection of genetic and epigenetic research with modern “big data” approaches to answers. In this quest, William is actively seeking out answers in the analysis of high-throughput genetics (next generation sequencing) and the impact that common variations in genetic sequence have on the three-dimensional structure of the genome within the nucleus. This work has led to several successful collaborations within Australia, the UK, USA, and Finland.

Outside of his research, William’s teaching role at the University has centered around developing, delivering, and promoting a consistent bioinformatics infrastructure for the New Zealand research community. He’s always looking for more opportunities to host bioinformatics workshops across New Zealand.

Research Hypothesis:

Amongst 3 billion bases of DNA lurks some 10 million points of genetic variation, making us who we are as individuals. In some cases, those variants contribute to diseases. Around two-thirds of those disease-associated variants are in non-coding regions of the DNA, a major challenge to those hoping to attribute these variants to altered function. Ultimately, this makes it difficult for scientists to understand why this variation is hazardous to our health, leaving diagnosis tricky and remediation nearly impossible. Some of these non-coding genetic changes can alter structural relationships within the nucleus, altering regulatory patterns, resulting in disease risk in humans. Thus, the failure of GWAS to turn SNP associations into clinically-relevant (actionable) causes for disease has resulted from a genetic approach that tries to link the complex phenotype to only the local genetic landscape. My approach aims to describe how non-coding regions of the DNA alter 3D organization of DNA in the nucleus, resulting in altered function.

For example, applying structural genomics to the problem of post-term birth. Somewhere between 5-20% of all births are post-term (born after 293 days – 41 weeks – of gestation), an affliction that carries both short- and long-term health consequences for the child. I’ve identified a set of genetic variants that associate with longer time in the womb and related these changes to alterations in enhancer regions, altering the three-dimensional structure of the genome within the nucleus. From this, we identified several major pathways for possible pathogenesis, most notably haematopoiesis and platelet thrombosis. The next steps here are to tie these pathway changes directly to their influence on gestational timing, improving obstectric management of birth.

Teaching | Current

I have joined a bioinformatics group with the goals of developing of a universal nationwide New Zealand bioinformatics teaching toolset. My current teaching role has centered around developing, delivering, and promoting a consistent bioinformatics infrastructure for the New Zealand research community. I'm always looking for more opportunities to host bioinformatics workshops across New Zealand.

Postgraduate supervision

I am currently co-supervising three PhD students at the Liggins Institute (Sreemol Gokuladhas, Andrew Dubovyi, Daniel Ho) on the role of genetics in predicting non-communicable diseases (muscle growth and maintenance, paediatric asthma, and type 1 diabetes).

Areas of expertise

William’s areas of expertise involve genome mapping, variant detection, RNA-sequencing, epigenetics, and analysing of environmental metagenomics data.

Keywords: analysis of deep sequence data, GWAS, variant detection, RNA sequencing, methylome, epigenetics, Hi-C, spatial genomics, metagenomics

Committees/Professional groups/Services

Faculty of Medical and Health Sciences Postdoctoral Society (2018-Present)

Institute of Engineering and Technology (IET) (2016-Present)

University of Auckland Postgraduate Student Association (2012-2016) - Vice President 2015-16


Selected publications and creative works (Research Outputs)

  • Gamage, T. K. J. B., Schierding, W., Tsai, P., Ludgate, J. L., Chamley, L. W., Weeks, R. J., ... James, J. L. (2018). Human trophoblasts are primarily distinguished from somatic cells by differences in the pattern rather than the degree of global CpG methylation. Biology open, 7 (8).10.1242/bio.034884
    Other University of Auckland co-authors: Peter Tsai, Teena Gamage, Jo James
  • Fadason, T., Schierding, W., Lumley, T., & O'Sullivan J (2018). Chromatin interactions and expression quantitative trait loci reveal genetic drivers of multimorbidities. 10.1101/340216
    Other University of Auckland co-authors: Tayaza Fadason
  • Mitchell, C. J., D'Souza RF, Schierding, W., Zeng, N., Ramzan, F., O'Sullivan JM, ... Cameron-Smith, D. (2018). Identification of human skeletal muscle miRNA related to strength by high-throughput sequencing. Physiological genomics, 50 (6), 416-424. 10.1152/physiolgenomics.00112.2017
    Other University of Auckland co-authors: Cameron Mitchell, Justin O'Sullivan, Sally Poppitt, David Cameron-Smith, Nina Zeng, Randall DSouza
  • Schierding, W., Antony, J., Karhunen, V., Vääräsmäki M, Franks, S., Elliott, P., ... Horsfield, J. A. (2018). GWAS on prolonged gestation (post-term birth): Analysis of successive Finnish birth cohorts. Journal of Medical Genetics, 55 (1), 55-63. 10.1136/jmedgenet-2017-104880
    Other University of Auckland co-authors: Justin O'Sullivan, Wayne Cutfield
  • Gamage, T., Schierding, W., Hurley, D., Tsai, P., Ludgate, J., Macaulay, E., ... James, J. (2017). Gene methylation regulates the acquisition of an invasive phenotype during extravillous trophoblast differentiation. Paper presented at Meeting of the International-Federation-of-Placenta-Associations (IFPA), Manchester, England. 30 August - 2 September 2017. Placenta. (pp. 1). 10.1016/j.placenta.2017.07.255
  • Gamage, T., Schierding, W., Tsai, P., Ludgate, J., Macaulay, E., Weeks, R., ... James, J. (2017). Global methylation profiling reveals intragenic methylation as a novel regulator of human trophoblast differentiation. Placenta. 10.1016/j.placenta.2017.07.128
    Other University of Auckland co-authors: Larry Chamley
  • Schierding, W. S., Fan, V., & Poonawala, N. (2017). Bioinformatics Workshops A-C on R and R Shiny, RNAswq and Metagenomics. Paper presented at Annual Conference of the Genetics Society of Australasia with the NZ Society for Biochemistry& Molecular Biology, Dunedin, NZ. 2 July - 6 July 2017. Related URL.
    Other University of Auckland co-authors: Nooriyan Poonawala-Lohani
  • Schierding, W., Antony, J., Karhunen, V., Vaarasmaki, M., Franks, S., Elliot, P., ... Horsfield, J. (2017). Variants at the ADAMTS13, BGALT5, SSBP2 and TKT Loci are associated with Post-term birth. 10.1101/153833


Contact details

Primary office location

M&HS BUILDING 503 - Bldg 503
Level 2, Room 201
New Zealand

Social links

Web links